ER-stress in the pathogenesis of autoimmune diabetes

Armando Lab meeting 2-26-14

The sensory systems of endoplasmic reticulum (ER) stress

Overview of IRE1 α pathway

Adaptive vs Terminal UPR (homeostasis vs. cell death)

Activation of the IRE1 pathway in NOD mice precedes hyperglycemia

Imatinib attenuates ER-stress in the islets of diabetic NOD mice

- *; <0.05, **; <0.001, vs. Imatinib treated group (n=3-5)
- Imatinib; 100mg/kg/day, p.o. ٠

Imatinib inhibits experimentally-induced ER-stress in INS1 β-cells in NOD islets

Imatinib inhibits ER-stress-mediated apoptosis and impairment of insulin secretion.

Imatinib inhibits ER-stress-mediated apoptosis and impairment of insulin secretion.

How does this assay work again?

Overexpression of c-abl in INS-1 cells induces TXNIP expression.

- c-Kit

Thapsigargin-dependent induction of TXNIP is c-abl dependent.

Mouse embryonic fibroblasts (MEFs).

Tg for 24h

Tg for 6h

Induction of c-abl in NOD islets is dependent on inflammation.

C-abl⁺ islets cells express GLUT-2

c-abl

c-abl/glut2

A potential c-abl and IRE1 α complex that promotes activation of IRE1 α .

Working Model

Acknowledgements:

Jeff Bluestone Wendy Rosenthal

Feroz Papa <u>Shuhei Morita</u> Rajarshi Ghosh Aeid Igbaria

Evidence for the IRE1 α sensing of ER stress in the immune system.

Plasma cell differentiation and the unfolded protein response intersect at the transcription factor XBP-I

Neal N. Iwakoshi^{1*}, Ann-Hwee Lee^{1*}, Prasanth Vallabhajosyula¹, Kevin L. Otipoby², Klaus Rajewsky² and Laurie H. Glimcher^{1,3}

Published online 3 March 2003: doi:10.1038/ni907

Research article 🛛 Related Commentary, page 224

The unfolded protein response sensor IRE1α is required at 2 distinct steps in B cell lymphopoiesis

Kezhong Zhang,¹ Hetty N. Wong,¹ Benbo Song,² Corey N. Miller,¹ Donalyn Scheuner,² and Randal J. Kaufman^{1,2}

¹Department of Biological Chemistry and ²Howard Hughes Medical Institute, University of Michigan Medical Center, Ann Arbor, Michigan, USA.

The transcription factor XBP-1 is essential for the development and survival of dendritic cells

Neal N. Iwakoshi,^{1,2} Marc Pypaert,³ and Laurie H. Glimcher^{1,4}

¹Department of Immunology and Infectious Diseases, Harvard School of Public Health, Boston, MA 02115

²Department of Surgery, Emory School of Medicine, Atlanta, GA 30322

³Department of Cell Biology, Yale University School of Medicine, New Haven, CT 06520

⁴Department of Medicine, Harvard Medical School, Boston, MA 02115

microRNA-17–92 Regulates IL-10 Production by Regulatory T Cells and Control of Experimental Autoimmune Encephalomyelitis

Dimitri de Kouchkovsky,* Jonathan H. Esensten,* Wendy L. Rosenthal,* Malika M. Morar,* Jeffrey A. Bluestone,*^{,†,1} and Lukas T. Jeker^{*,†,1}

TXNIP is expressed by multiple cell types in NOD islets.

New onset diabetic

DAPI/GLUT-2/Insulin/TXNIP

Insulin/TXNIP

Pathways regulating TXNIP

ER stress-induced apoptosis is c-Abl dependent

Done in MEFs

STF reduces c-Abl-induced TXNIP expression

DOX, STF for 72h

